skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Yingchen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper develops a generalized Copula-polynomial chaos expansion (PCE) framework for power system probabilistic power flow that can handle both linear and nonlinear correlations of uncertain power injections, such as wind and PVs. A data-driven Copula statistical model is used to capture the correlations of uncertain power injections. This allows us to resort to the Rosenblatt transformation to transform correlated variables into independent ones while preserving the dependence structure. This paves the way of leveraging the PCE for surrogate modeling and uncertainty quantification of power flow results, i.e., achieving the probabilistic distributions of power flows. Simulations carried out on the IEEE 57-bus system show that the proposed framework can get much more accurate results than other alternatives with different linear and nonlinear power injection correlations. 
    more » « less
  2. The Remedial Action Scheme (RAS) is designed to take corrective actions after detecting predetermined conditions to maintain system transient stability in large interconnected power grids. However, since RAS is usually designed based on a few selected typical operating conditions, it is not optimal in operating conditions that are not considered in the offline design, especially under frequently and dramatically varying operating conditions due to the increasing integration of intermittent renewables. The deep learning-based RAS is proposed to enhance the adaptivity of RAS to varying operating conditions. During the training, a customized loss function is developed to penalize the negative loss and suggest corrective actions with a security margin to avoid triggering under-frequency and over-frequency relays. Simulation results of the reduced United States Western Interconnection system model demonstrate that the proposed deep learning–based RAS can provide optimal corrective actions for unseen operating conditions while maintaining a sufficient security margin. 
    more » « less